宠文网

通俗天文学

宠文网 > 其他书籍 > 通俗天文学

第15章

书籍名:《通俗天文学》    作者:金克木
    《通俗天文学》章节:第15章,宠文网网友提供全文无弹窗免费在线阅读。!


                                    阿特金森(R.  Atkinson)和德国核物理学家弗里茨?豪特曼斯(F.  Houtermans)合作,发表了一篇题为“关于恒星内部元素结构的可能性问题”的文章,将伽莫夫的量子隧穿理论应用到恒星内部能量的问题上。他们认为:恒星内部的质子和质子也可以通过“隧道”越过势垒很高的堡垒,接近到可以发生聚变的距离之内,进行轻核聚变而释放出巨大的能量。这样,他们就成功地解决了在较低温度下使氢聚变为氦来实现太阳的能量需求,由于这种反应是在数千万摄氏度下进行的,他们就把这种反应称为“热核反应”。

            天文观测表明,太阳核心的物质处于等离子态,完全适合于热核反应的物理条件。那么,太阳和恒星内部的氢是怎样聚变为氦的呢?1938年,美国核物理学家汉斯?贝特(H.  Bethe)和查理斯?克里奇菲尔德(C.  L.  Critchfield)发现了氢直接变为氦的反应机制,称为“质子—质子循环”。在这一反应中1克氢将释放6  700亿焦耳的核能,这些核能迅速转化为热能,并通过对流和辐射向太阳的外层空间输送出去。

            贝特又和德国的弗里德里希?冯?魏茨泽克(F.  V.  Wetabckor)各自独立地找到了由氢转变为氦的“碳循环”机制。现代天文观测表明,太阳的能量98%来源于质子-质子循环,2%来源于碳循环。贝特也因该理论的创立而获1967年度诺贝尔物理学奖。

        太阳的演化

            现代的观测表明,太阳已有50亿年的历史。它是一个典型的中等质量恒星,正平稳地燃烧着自身的核储备,并把氢转变为氦。现在人们对恒星演化的知识逐渐完善,并勾勒出太阳的生命历程。

            幼年阶段,原始星云在自身引力作用下不断收缩,密度不断增大,温度不断升高。历时数千万年形成原始太阳。

            青年阶段,太阳位于非常稳定的主星序(参看“恒星”一编),按照观测得到的氢和氦的丰度估计,太阳还可以生存50亿年之久。今天的太阳正处在它的鼎盛时期。

            中年阶段,约持续10亿年时间。当热核反应的燃烧圈接近一半太阳半径时,将会难以支持太阳自身的巨大引力,中心将会塌缩,这个塌缩过程中所释放的巨大能量使太阳的外部大幅膨胀,这时的太阳体积很大、密度很小、表面亮度很强,演化为一颗红巨星。太阳直径将扩大到现在的250倍,连地球都将被吞没。

            老年阶段,太阳转变为一颗脉动变星,终于,内部核能耗尽,整体发生坍塌,内部被压缩成一个密度很高的核心,冷却后形成一颗白矮星,并长久地留在宇宙中。

        地球

            既然我们所居住的这球体是行星之一,那么即使它没有别的值得我们注意的地方,也该要描述一下它在天体中的地位了。虽然它跟宇宙间大天体比起来,甚至跟我们太阳系的大行星比起来,它只是微不足道的一员,可是在它自己的系统中却还是最大的一个。至于它是人类的家园——这一点我们更不用说了。

            地球是什么?我们可以先下一个广泛的定义,说它是一个物质的球体,约有1万多千米的直径,由于其各部分的互相吸引而联成一体。我们都知道它并非严格的球形,它的赤道部分稍微鼓起来一些。因为它表面的不平,于是确定它的准确的大小与形状也就比较困难。幸好人造卫星技术的进展帮助人们解决了这个难题。

            关于地球形状及大小的结论可概括如下:

            极直径12  713.6千米

            赤道直径12  756.3千米

            我们由此可以看出赤道直径比极直径大42.7千米了。

        地球的内部

            我们由直接观察所知的地球差不多完全限于它的表面。人类在上面挖穿的最深处与全球大小比起来不过像苹果皮之于苹果一样。

            我先要请读者注意一下地球上的重量、压力、重力等事实。我们试着研究一块1立方米的泥土,这是地球外层表面的一部分。这块泥土加在自己底上的重量也许是2.5吨。下面1立方米也有同样重量,因此加在自己底上的重量就是自身重量加上面1立方米的重量了。这种压力的增加一直随着我们的深入。地球内部的每1平方米都支持着一直到表面的1平方米的柱形的压力。表面下不到若干厘米的地方这种压力就以吨计了;1千米深的地方大概是2  500吨;100千米的地方就是25万吨了;这样一直继续到中心。在这种不可思议的压力之下,地球中部的物质被高度地压缩。那儿的物质也更沉重。地球的平均密度被认为等于水的5.52倍,但其表面密度却只有水的两三倍。

            关于地球的确定事实之一就是在表面以下的矿坑中,愈深处温度愈高。增加的比率依地域与纬度而各处不同,平均增加率是每下降约30米增高1℃。

            这种温度的增加到地球中心时将怎样呢?回答这问题我们可以说不能仅仅根据表面的情形。因为地球外部在很久以前就冷却了,所以我们不能在下降时得到很大的温度增加。从地球存在以来热量都被保持着这一点事实,表明中心温度一定更高,而近表面的温度增加的比率也一定会保持到更深的若干千米直到地球的内部。

            依照这增加率来看,地球的20千米或25千米深的地方的物质一定是灼热的,而200千米或250千米以下的热度则一定足以熔化所有构成地壳的物质了。这事实使早期的地质学家认为我们的地球是一个熔化了的大块,正如一大块熔化了的铁,上面蒙了一层几千米厚的冷壳层,我们就居住在这壳上。火山的存在以及地震的发生都增加了这种见解的可靠性。

            但在19世纪20年代,天文学家与物理学家收集了一些证据,似乎证明地球从中心到表面都是固体,甚至比同样大的一块钢还坚硬。这学说是开尔文爵士(Lord  Kelvin)第一个发展的。他认为如果地球是被一层壳包着的液体,月亮的作用就不是吸起海洋的潮汐而只要将全地球向月亮的方向拉起来,却不改变壳与水之间的相对位置。

            同样可靠的是那奇特的现象,地球表面的纬度变迁,这在下面我们就要讲到。不仅一个内部柔软的球体不能像地球这样旋转,甚至硬度不如钢的球体也不能。

            那么我们如何能调和这固体性质与那不可思议的高温度呢?看来只有一个可能的解决方法:地球内部的物质因那巨大的压力而保持其为固体。据实验证明:强大的压力能提高物质的熔点,压力越大,熔点就越高。一块岩石到了熔点以后再加以重压,压力的结果使它又还原为固体。因此,我们增加了温度只要同时考虑压力的问题就可以使地球中心物质保持固体了。

            当然我们还有一些实际的办法来获得证据,在地表人工制造一个震源(如炸弹),通过接受地下的回波来确知地下结构。通过地震技术获得的资料发现,地球的内核与地壳为实体,而中间的外核与地幔层为流体。地核可能大多由铁构成,虽然也有可能是一些较轻的物质。地核中心的温度可能高达7  200℃,比太阳表面还热;下地幔可能由硅、镁、氧和一些铁、钙、铝构成;上地幔大多由橄榄石、辉石、钙、铝构成。地壳主要由石英和类长石的其他硅酸盐构成。

        地球的重力与密度

            与地球有关的另一有趣问题就是它的密度,或说比重。我们都知道一块铅比同样大的一块铁要重,而一块铁又比同样大的一块木头重。是不是有方法确定地球广大内部的深处一立方米有多重呢?如果有方法,我们就能确定全地球的实在重量了。这问题的解决要依赖物质的引力。

            任何小孩从会走路时起就很熟悉于万有引力的效应了,可是最深刻的哲学家也不能真正明白它的起因。依照牛顿的万有引力的学说,将所有地面上的东西引向中心去的力量并不仅存在于地球的中心,却由于构成地球的一切物质的共同努力。牛顿还把他的学说更推进一层,说宇宙间一切物质都吸引着其他的物质,而这引力的大小是依两者之间距离增加按平方规律减少的。这就是说,距离加1倍,引力的大小就要除以4;远3倍除以9;远4倍除以16,依此类推。

            承认了这一点,那么我们四周的物体就都有自己的引力了,于是我们又有问题了:我们能不能用实验测出这引力的大小呢?数学理论说明,同等比重的球体吸引其表面小物体的力量与其直径成比例。一个直径60厘米、密度跟地球一样的球体的引力就只有地球重力的两千万分之一。

            于是,绝顶聪明的卡文迪许用了一个极其巧妙的方法,测定出了万有引力的大小。他用一根很细的石英丝来悬挂一根两端有两个等重铅球的轻质金属竿。然后在其中一个铅球旁边放上第三个铅球,通过石英丝扭曲的程度,就可以测得这两个铅球之间的引力了。这种测量是异常精巧而困难的。所用的工具虽然在原则上来讲是极简单的,但是我们必须记得,引力的大小还不及这两个小球重量的千万分之一呢!要找出一件重量不超过这引力的东西的确非常困难,不仅是一只蚊子的重量,就连蚊子的一条腿所受到的重力,也要大大的超过测出的引力。